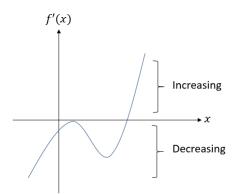

Mathematics Methods

Unit 3

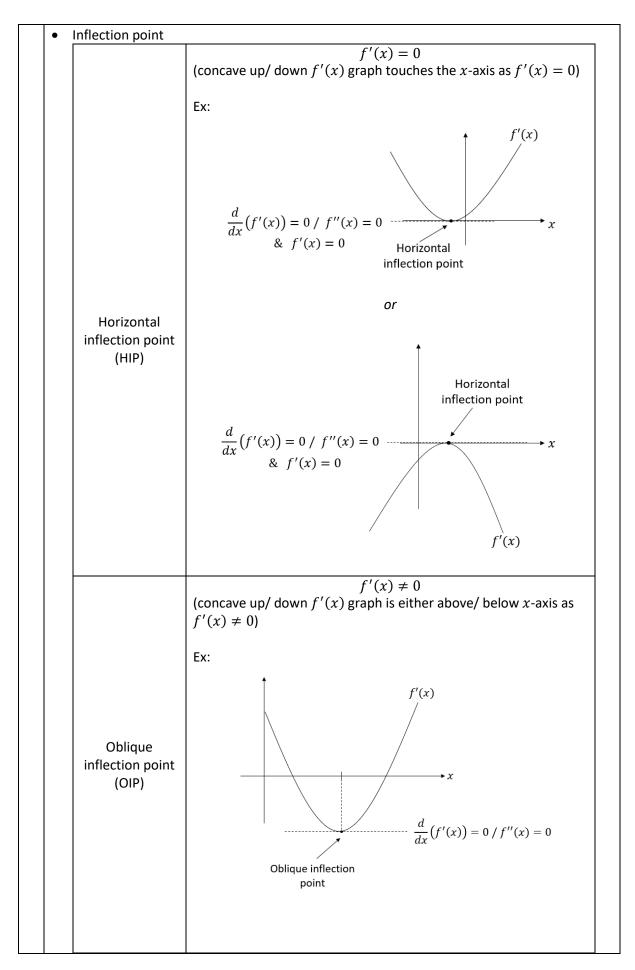
Differentiation – Graphs

1.	Graph (polynomial) of:				
	(a) $f(x)$				
	 f(x) f(x) f(x) graph that intersects with the horizontal axis (x-axis)/ vertical axis (y -axis) is the x or y intercept(s) Stationary point(s) can be seen through the shape of graph as follows: 				
		Concave up (max. point)			
		Concave down (min. point)			
		Horizontal inflection point			
		Oblique inflection point			


(b) f'(x)

- f'(x) graph that intersects with the horizontal axis (x-axis) may reflect the stationary points (either max., min. or horizontal inflection point) in the graph of f(x).
- $\underline{*f'(x)}$ graph:

, , , , , , ,	
Below <i>x</i> -axis	Graph of $f(x)$ decreasing
Above <i>x</i> -axis	Graph of $f(x)$ increasing


Ex:

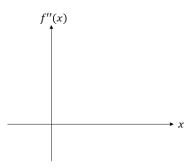
• Maximum or minimum point

minitum point						
			<i>x</i> ⁻	<i>x</i> ₀	x ⁺	
		$\frac{dy}{dx}$	-ve	0	+ve	
Min. point		Slope	_		/	
·		Stationary point	\		/	
	*Decreasing to increasing $f'(x)$ graph					
			x-	<i>x</i> ₀	x ⁺	
		$\frac{dy}{dx}$	+ve	0	-ve	
Max. point		Slope	/	_		
Waxi point		Stationary point		•	\	
	*Increasing to decreasing $f'(x)$ graph					

*follow the previous point

Oblique inflection point (OIP)

Oblique inflection point

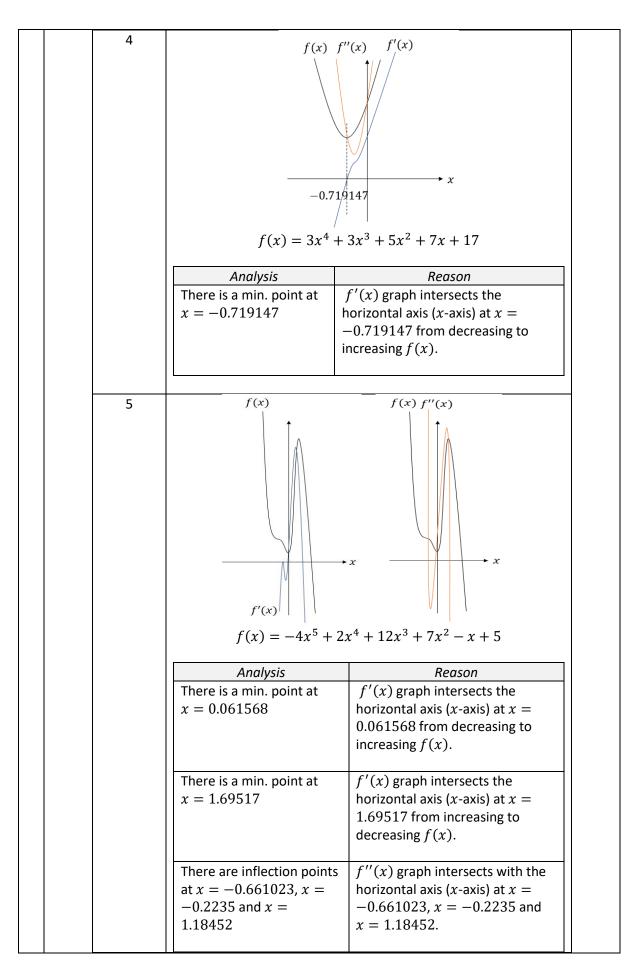

 $\frac{d}{dx}(f'(x)) = 0 / f''(x) = 0$ f'(x)

The maximum/ min point of f'(x) graph is the point of oblique inflection for f(x) graph

or

• f'(x) values of any point on the graph is the gradient value for graph of f(x)

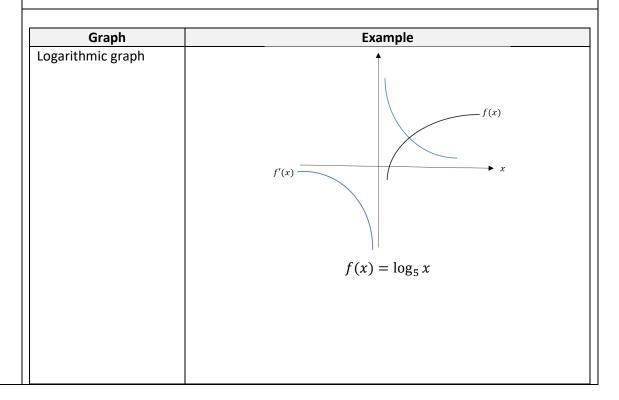
(c) f''(x)



- f''(x) graph that intersects with the horizontal axis (x-axis) reflects the inflection points in graph of f(x).
- If f''(x) graph touches but does not intersect (cross) the horizontal axis (x-axis), concavity does not change, thus it cannot be an inflection point.

• f''(x) graph:

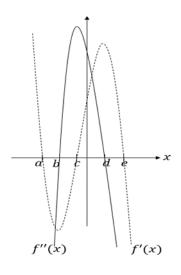
) (w) Brapin	
Below x -axis, $f''(x) < 0$	Graph of $f(x)$ concave downwards
Above <i>x</i> -axis, $f''(x) > 0$	Graph of $f(x)$ concave upwards


Derivative of various graphs of function (a) Polynomial Power of Example 2 f'(x)f(x) $f(x) = 2x^2 + 5x + 7$ Analysis Reason There is an min. point at f'(x) graph intersects the $x = -1\frac{1}{4}$ horizontal axis (x-axis) at x = $-1\frac{1}{4}$ from decreasing to increasing f(x). 3 f'(x)f(x) $f(x) = 3x^3 + 4x^2 + 6x - 5$ Reason **Analysis** There is an inflection f''(x) graph intersects with the horizontal axis (x-axis) at $x = -\frac{4}{9}$. point at $x = -\frac{4}{9}$ or Min. point of f'(x) graph is above the horizontal axis (x-axis).

(b) Trigonometric

Graph of	Example	
sin	$f''(x)$ $f'(x)$ $f''(x)$ $f''(x)$ $f'''(x)$ Derivative graph of sin will be of the shape for graph of sin for every 4^{th} , 8^{th} , 12^{th} , derivation.	
cos	Derivative graph of \cos will be of the shape for graph of \cos for every 4^{th} , 8^{th} , 12^{th} , derivation.	

(c) Exponential and logarithmic

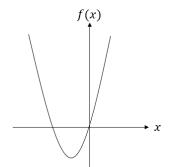


Exponential graph		
	If function in form of Ae^x	Graph $f(x)$ is the same
	Ex: 5 <i>e</i> ^x	regardless of differentiation.
	If function in form of	Graph $f(x)$ is vertically stretched
	Ae^{bx}	as $ A > 1$.
	Ex: 5 e ^{5x}	$f(x) \qquad Ab^{x} b^{x}$
	Other	Graphs of derivative for graph $f(x)$ varies according to the exponential function, $f(x)$.

3. Exam questions

Example 1:

Diagram below shows graphs of f'(x) and f''(x) being plotted in the same graph.


• Identify whether the graph of f(x) has inflection points, maximum point or minimum point. If yes, state the point(s).

• Sketch a graph of f(x).

Example 2:

Diagram below shows a graph of f(x) that has a maximum point at $x=-\frac{1}{3}$.

• What values of x is the gradient of graph positive?

- Sketch a graph of f(x).

END